

Artificial Intelligence

Lecture 9 – Reasoning about Actions

Outline

● Reasoning about the effects of actions
● Situation calculus
● Example: Blocks world
● The frame problem
● Qualification and ramification problems

Knowledge representation &
reasoning

● In previous lectures, we have used propositional and
predicate calculus to reason about a static world

● Propositions and predicates describe properties and
relations of a single state of affairs

● Sentences are true or false relative to this particular
state of affairs

● Truth assignment/interpretation is fixed – if anything
were to change, the truth assignment/interpretation
would no longer reflect the new state of affairs

Change

● Representing how things change is one of the
most important areas in knowledge
representation
● to learn we need to represent what happened in the

past
● to plan we need to represent hypothetical future

states

● Reasoning about change is one of the most
important kinds of reasoning – critical for
selecting actions

Reasoning about Change

● When reasoning about how actions change the
world, we need to consider:
● when an action is applicable – the qualification

problem
● what the action changes – the ramification problem
● what the action does not change – the

representational and inferential frame problems

Problem-Solving Representations

● AI problem-solving is defined in terms of goals, states
and operators

● State representations are global – they contain all the
information about a particular state, e.g., a complete
board position in chess

● Applying an operator transforms a (complete) state
description into a new state description

● Works well when the state descriptions are compact,
and the global consequences of an action are easy to
specify, e.g., noughts and crosses

Localised Representations

● In more complex domains, actions typically have local effects

● For example, moving an object from A to B does not usually change
any ot its other properties, such as its size, weight, colour etc.

● Not necessary to represent the effect of an action on the whole state

● Focus instead on just those aspects of a state which are relevant to
performing an action and which are affected by it

● When representing and reasoning about action and change we
therefore use partial descriptions of states and localised descriptions
of actions

Situation Calculus

● World is represented as a series of situations or 'snapshots'

● Predicates and functions whose truth values vary from
situation to situation are called fluents

● Each fluent is extended with an additional situation argument,
e.g., At(brian, C3, s

0
), At(brian, office, s

1
)

● Situations are simply constants – names for a particular state
of the world

● All sentcences which are true at a given point in time
(situation) have the same situation argument

Example: Blocks World

● The blocks world domain consists of
● a table, set of cubic blocks and a robot arm
● each block is either on the table, stacked on top of

another block or held by the arm
● the arm can pick up a block and move it to another

position either on the table or on top of another
block

● the arm can only pick up one block at a time, so it
cannot pick up a block which has another block on
top

Example: Representing the
Blocks World

● Blocks are represented by constants: a, b, c, ... etc.

● States are described using the following fluents:

On(x, y, s) block x is on block y in situation s

OnTable(x, s) block x is on the table in situation s

Clear(x, s) there is no bock on top of block x in situation s

Holding(x, s) the arm is holding block x in situation s

ArmEmpty(s) the arm is not holding any block in situation s

● We also need some axionms specifying the domain theory

Example: Reasoning about the
Blocks World

∀x, s (OnTable (x, s) ∀ ↔ ¬ y On(x, y, s) ¬Holding(x, s))∃ ∧
● for all blocks x and situations s, x is on the table in s, if and

only if there is no block y which x is on in s and the arm is
not holding x in s

∀x, s (∀ y On(x, y, s) ∃ ↔ ¬OnTable(x, s) ¬Holding(x, s))∧
● for all blocks x and situations s, x is on a block y in s, if and

only if x is not on the table and the arm is not holding x in s

∀x, s (Holding(x, s)) ∀ ↔ ¬ y On(x, y, s) ¬OnTable(x, s))∃ ∧
● for all blocks x and situations s, the arm is holding x in s, if

and only if there is no block y which x is on and x is not an
the table in s

Example: Reasoning about the
Blocks World

∀x, s (Clear (x, s) ∀ ↔ ¬ y On(y, x, s))∃
● for all blocks x and situations s, x is clear in s, if and

only if there is no block y which is on x in s

∀s (ArmEmpty(s)) ↔ ¬ x Holding(x, s))∃
● for all situations s, the arm is empty in s, if and only

if there is no block x which the arm is holding in s

Example: Blocks World

● initial state

On(c, a, s
0
) OnTable(a, s∧

0
) OnTable(b, s∧

0
) ∧

ArmEmpty(s
0
) Clear(b, s∧

0
) Clear(c, s∧

0
)

A

C

B

Example: Blocks World

● From the initial state

On(c, a, s
0
) OnTable(a, s∧

0
) OnTable(b, s∧

0
) ∧

ArmEmpty(s
0
) Clear(b, s∧

0
) Clear(c, s∧

0
)

● we can derive

¬OnTable(c, s
0
), ¬ y On(a, y, s∃

0
), ¬ y On(b, y, s∃

0
),

¬Clear(a, s
0
), ¬ x Holding(x, s∃

0
)

● However this doesn't tell us what is true if we
perform an action in s

0

Representing Actions

● Actions are represented by terms which name
the action and specify its parameters, e.g.,
● the term pickup(x) denotes the action of picking up

a block x
● the term drop denotes the action of droping the

block held by the arm

● Note that actions are terms not formulas – they
denote the action performed, not true or false

Results of Actions

● An action performed in a given situation s
results in a new situation

● The formula result(a, s) is used to denote the
situation which results fro performing the action
a in the situation s, e.g.,
● the term result(pickup(x), s) denotes the situation

which results from picking up the block x in situation
s

● Each action is decribed by two axioms: a
possibility axiom and an effects axiom

Possibility and Effects Axioms

● A possibilty (precondition) axiom says when it is
possible to execute an action

● Possibility axioms have the form Precondition
→ Poss(a, s), where Poss(a, s) means that it is
possible to execute action a in situation s

● An effects (postcondition) axiom says what
happens when which is possible is executed

● Effects axioms have the form Poss(a, s) →
Changes that result from the action

Example Possibility Axioms

∀x, s (ArmEmpty (s) ∀ Clear(x, s) ∧ → Poss(pickup(x), s))

● the action pickup(x) is possible in situation s, if the
arm is empty and block x is clear in s

∀x, s (Holding(x, s)∀) → Poss(drop, s))

● the action drop is possible in situation s, if the arm
is holding block x in s

Example Effects Axioms

∀x, y, s (Poss(pickup(x), s)∀ ∀ On(x, y, s) ∧ →

 Holding(x, result(pickup(x), s)) Clear(y, result(pickup(x), s))∧

● the effects of performing a pickup(x) action which is possible in
situation s are the arm is holding block x and if x was on block y,
then y is clear in the situation resulting from the pickup action

∀x, y, s (Poss(pickup(x), s)∀ ∀ OnTable(x, s) ∧ →

 Holding(x, result(pickup(x), s)))

∀x, y, s (Poss(drop, s)∀ ∀ Holding(x, s) ∧ →

 ArmEmpty(result(drop, s)) OnTable(x, result(drop, s)))∧

● the effects of performing a drop action which is possible in
situation s are that the arm is empty and x is on the table in the
situation resulting from the drop action

Frame Axioms

● Effects axioms are not sufficient to keep track of
which formulas are true in a given situation

● We also need to explicitly state which parts of
the world are not changed by an action

● Axioms which describe which parts of the world
are not changed by an action are called frame
axioms

● Together, the effect and frame axioms provide a
complete description of how the world evolves in
response to actions

Example Frame Axioms

∀a, x, s (¬Holding(x, s)∀ ∀ a ∧ ≠ pickup(x) →

 ¬Holding(x, result(a, s)))

● for all actions a, blocks x and situations s, if the arm is not
holding x in s and a is not the action of picking up x, then
the arm will not be holding x in the situation which results
from performing the action a

∀a, x, s (Holding(x, s)∀ ∀ a ∧ ≠ drop → Holding(x, result(a, s)))

● for all actions a, blocks x and situations s, if the arm is
holding x in s and a is not the drop action, then the arm
will still be holding x in the situation which results from
performing the action a

Exercise: Situation Calculus

● Use the possibility, effects and frame axioms
(and the domain theory) to show that picking up
block c and dropping it on the table results in all
three blocks being on the table, i.e. that

 OnTable(a, result(drop, result(pickup(c), s
0
))) ∧

 OnTable(b, result(drop, result(pickup(c), s
0
))) ∧

 OnTable(c, result(drop, result(pickup(c), s
0
)))

is true

Exercise 1: Solution (frame axioms)

∀a, x, s (OnTable(x, s)∀ ∀ a ∧ ≠ pickup(x) →

 OnTable(x, result(a, s)))

● for all actions a, blocks x and situations s, if x is on the
table in s and a is not the action of picking up x, then x
is still in the table in the situation which results from
performing the action a

● we also need a unique name assumption, e.g.:

∀a, y, s (x ∀ ∀ ≠ y → pickup(x) ≠ pickup(y))

Exercise 1: Solution

● For block a, given OnTable(a, s
0
) we can show

OnTable(a, result(pickup(c), s
0
))

● Using modus ponens and the frame axiom

∀act, x, s (OnTable(x, s)∀ ∀ act ∧ ≠ pickup(x) →

 OnTable(x, result(act, s)))

● Since pickup(a) ≠ pickup(c) using modus ponens and the
frame axiom, we can then show

 OnTable(a, result(drop, result(pickup(c), s
0
)))

● Since pickup(a) ≠ drop

● Derivation for block b is similar

Exercise 1: Solution

● For block c: from the initial state and the possibility axiom

 ∀x, s (ArmEmpty (s) ∀ Clear(x, s) ∧ → Poss(pickup(x), s))

● we have that it is possible to perform a pickup action on c Poss(pickup(c), s
0
))

● From the effects axiom

 ∀x, y, s (Poss(pickup(x), s)∀ ∀ On(x, y, s) ∧ →

 Holding(x, result(pickup(x), s)) Clear(y, result(pickup(x), s))∧

● we can derive the effect of actually picking up block c, i.e.:

 Holding(c, result(pickup(x), s
0
)) Clear(a, result(pickup(x), s∧

0
))

Exercise 1: Solution

● from Holding(c, result(pickup(x), s
0
)) and the

possibility axiom

∀x, s (Holding(x, s)) ∀ → Poss(drop, s))

● we have that Poss(drop, result(pickup(c), s
0
)) and

using the effects axiom

∀x, y, s (Poss(drop, s)∀ ∀ Holding(x, s) ∧ →

 ArmEmpty(result(drop, s)) OnTable(x, result(drop, s)))∧

● we can show

 OnTable(c, result(drop, result(pickup(c), s
0
)))

Exercise 2: Situation Calculus 2

● Write possibility, effects and frame axioms for the
action put(x, y) which puts the block x on the
block y

● For put(x, y) to be possible, x must be held by
the arm, and y must be clear

● The effects of put(x, y) are that the arm is empty
and that x is on y

● The frame axioms should state that, apart from
the effects of a put(x, y) listed above, nothing
else changes

Exercise 2: Solution

∀x, y, s (Holding(x, s)∀ ∀ Clear(y, s) ∧ → Poss(put(x, y), s))

● the action put(x, y) is possible in situation s, if
the arm is holding block x and y is clear in s

∀x, y, s (Poss(put(x, y), s) ∀ ∀ →

 ArmEmpty(result(put(x, y), s))) On(x, y, result(put(x, y), s)))∧

● The effects of performing a put(x, y) action which is
possible in situation s are that the arm is empty and
block x is on block y in the situation resulting from the
put action

Exercise 2: Solution

∀a, x, y, s (Holding(x, s) (a ∀ ∀ ∀ ∧ ≠ drop a ∨ ≠ put(x, y))
→ Holding(x, result(a, s)))

● for all actions a, blocks x and situations s, if the
arm is holding x in s and a is not a drop action
or a put action, then the arm will still be holding
x in the situation which results from performing
the action a

● Note: this replaces the previous frame axiom
for Holding

The Frame Problem(s)

● The (typically very large) number of frame axioms required to
reason about actions in a domain gives rise to the
representaional frame problem

● The inferential frame problem refers to the need to raeson
explicitly about things that don't change

● When reasoning about sequences of actions, each propeerty
of interest must be (re)derived for each new situation, even if
the property hasn't changed

● Since each action usually changes only a few facts about a
situation this is very inefficient

The Qualification Problem

● In general, it is difficult to specify precisely the situations in
which an action will have the specified (intended) results

● For example, it may not be possible to perform a pickup action
if the block is slippery or glued to the table

● If these “side conditions” are left out of the effect and frame
axioms, we may derive false beliefs about the consequences
of executing and action

● How to qualify the “normal” effects of an action in “abnormal”
circumstances is the qualification problem

The Ramification Problem

● In addition to the explicit consequences specified in their
definitions, actions also have implicit consequences

● For example, picking up a box also picks up all of the objects
in the box (if any), and if I take the box somewhere, I also
take its contents etc.

● The ramification problem can be seen as the derivation of
the ultimate effects of an action

● May involve additional simple inferences (if the box is in the
living room, then all the objects in the box are in the living
room), reasoning about cause and effect (naive physics) and
other kinds of consequences

● Hard to know when to stop...

Example

● Gavrillo Princip shoots Archduke Franz
Ferdinand

● Shooting Franz Ferdinand causes him to die
● The death of Franz Ferdinand leads to the

Austro-Hungarian Empire declaring war on
Serbia

● Which leads to the first World War
● Which leads to the Treaty of Versailles ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

