
  

Artificial Intelligence

Lecture 9 – Reasoning about Actions 



  

Outline

● Reasoning about the effects of actions
● Situation calculus
● Example: Blocks world
● The frame problem
● Qualification and ramification problems



  

Knowledge representation & 
reasoning

● In previous lectures, we have used propositional and 
predicate calculus to reason about a static world

● Propositions and predicates describe properties  and 
relations of a single state of affairs

● Sentences are true or false relative to this particular 
state of affairs

● Truth assignment/interpretation is fixed – if anything 
were to change, the truth assignment/interpretation 
would no longer reflect the new state of affairs



  

Change

● Representing how things change is one of the 
most important areas in knowledge 
representation
● to learn we need to represent what happened in the 

past
● to plan we need to represent hypothetical future 

states

● Reasoning about change is one of the most 
important kinds of reasoning – critical for 
selecting actions



  

Reasoning about Change

● When reasoning about how actions change the 
world, we need to consider:
● when an action is applicable – the qualification 

problem
● what the action changes – the ramification problem
● what the action does not change – the 

representational and inferential frame problems



  

Problem-Solving Representations

● AI problem-solving is defined in terms of goals, states 
and operators

● State representations are global – they contain all the 
information about a particular state, e.g., a complete 
board position in chess

● Applying an operator transforms a (complete) state 
description into a new state description

● Works well when the state descriptions are compact, 
and the global consequences of an action are easy to 
specify, e.g., noughts and crosses



  

Localised Representations

● In more complex domains, actions typically have local effects

● For example, moving an object from A to B does not usually change 
any ot its other properties, such as its size, weight, colour etc.

● Not necessary to represent the effect of an action on the whole state

● Focus instead on just those aspects of a state which are relevant to 
performing an action and which are affected by it

● When representing and reasoning about action and change we 
therefore use partial descriptions of states and localised descriptions 
of actions



  

Situation Calculus

● World is represented as a series of situations or 'snapshots'

● Predicates and functions whose truth values vary from 
situation to situation are called fluents

● Each fluent is extended with an additional situation argument, 
e.g., At(brian, C3, s

0
), At(brian, office, s

1
)

● Situations are simply constants – names for a particular state 
of the world

● All sentcences which are true at a given point in time 
(situation) have the same situation argument



  

Example: Blocks World

● The blocks world domain consists of
● a table, set of cubic blocks and a robot arm
● each block is either on the table, stacked on top of 

another block or held by the arm
● the arm can pick up a block and move it to another 

position either on the table or on top of another 
block

● the arm can only pick up one block at a time, so it 
cannot pick up a block which has another block on 
top



  

Example: Representing the 
Blocks World

● Blocks are represented by constants: a, b, c, ... etc.

● States are described using the following fluents:

On(x, y, s) block x is on block y in situation s

OnTable(x, s) block x is on the table in situation s

Clear(x, s) there is no bock on top of block x in situation s

Holding(x, s) the arm is holding block x in situation s

ArmEmpty(s) the arm is not holding any block in situation s

● We also need some axionms specifying the domain theory



  

Example: Reasoning about the 
Blocks World

∀x, s (OnTable (x, s) ∀ ↔ ¬ y On(x, y, s)  ¬Holding(x, s))∃ ∧
● for all blocks x and situations s, x is on the table in s, if and 

only if there is no block y which x is on in s and the arm is 
not holding x in s

∀x, s (∀ y On(x, y, s) ∃ ↔ ¬OnTable(x, s)  ¬Holding(x, s))∧
● for all blocks x and situations s, x is on a block y in s, if and 

only if x is not on the table and the arm is not holding x in s

∀x, s (Holding(x, s)) ∀ ↔ ¬ y On(x, y, s)  ¬OnTable(x, s))∃ ∧
● for all blocks x and situations s, the arm is holding x in s, if 

and only if there is no block y which x is on and x is not an 
the table in s



  

Example: Reasoning about the 
Blocks World

∀x, s (Clear (x, s)  ∀ ↔ ¬ y On(y, x, s))∃
● for all blocks x and situations s, x is clear in s, if and 

only if there is no block y which is on x in s

∀s (ArmEmpty(s))  ↔ ¬ x Holding(x, s))∃
● for all situations s, the arm is empty in s, if and only 

if there is no block x which the arm is holding in s



  

Example: Blocks World

● initial state

On(c, a, s
0
)  OnTable(a, s∧

0
)  OnTable(b, s∧

0
)  ∧

ArmEmpty(s
0
)  Clear(b, s∧

0
)  Clear( c, s∧

0
)

A

C

B



  

Example: Blocks World

● From the initial state

On(c, a, s
0
)  OnTable(a, s∧

0
)  OnTable(b, s∧

0
)  ∧

ArmEmpty(s
0
)  Clear(b, s∧

0
)  Clear( c, s∧

0
)

● we can derive

¬OnTable(c, s
0
),  ¬ y On(a, y, s∃

0
),  ¬ y On(b, y, s∃

0
), 

¬Clear( a, s
0
), ¬ x Holding(x, s∃

0
)

● However this doesn't tell us what is true if we 
perform an action in s

0



  

Representing Actions

● Actions are represented by terms which name 
the action and specify its parameters, e.g., 
● the term pickup(x) denotes the action of picking up 

a block x
● the term drop denotes the action of droping the 

block held by the arm

● Note that actions are terms not formulas – they 
denote the action performed, not true or false



  

Results of Actions

● An action performed in a given situation s 
results in a new situation

● The formula result(a, s) is used to denote the 
situation which results fro performing the action 
a in the situation s, e.g.,
● the term result(pickup(x), s) denotes the situation 

which results from picking up the block x in situation 
s

● Each action is decribed by two axioms: a 
possibility axiom and an effects axiom



  

Possibility and Effects Axioms

● A possibilty (precondition) axiom says when it is 
possible to execute an action

● Possibility axioms have the form Precondition 
→ Poss(a, s), where Poss(a, s) means that it is 
possible to execute action a in situation s

● An effects (postcondition) axiom says what 
happens when which is possible is executed

● Effects axioms have the form Poss(a, s) → 
Changes that result from the action



  

Example Possibility Axioms

∀x, s (ArmEmpty (s) ∀  Clear(x, s) ∧ → Poss(pickup(x), s))

● the action pickup(x) is possible in situation s, if the 
arm is empty and block x is clear in s

∀x, s (Holding(x, s)∀ ) → Poss(drop, s))

● the action drop is possible in situation s, if the arm 
is holding block x in s



  

Example Effects Axioms

∀x, y, s (Poss(pickup(x), s)∀ ∀   On(x, y, s) ∧ → 

 Holding(x, result(pickup(x), s))  Clear(y, result(pickup(x), s))∧

● the effects of performing a pickup(x) action which is possible in 
situation s are the arm is holding block x and if x was on block y, 
then y is clear in the situation resulting from the pickup action

∀x, y, s (Poss(pickup(x), s)∀ ∀   OnTable(x, s) ∧ → 

 Holding(x, result(pickup(x), s)))

∀x, y, s (Poss(drop, s)∀ ∀   Holding(x, s) ∧ → 

 ArmEmpty(result(drop, s))  OnTable(x, result(drop, s)))∧

● the effects of performing a drop action which is possible in 
situation s are that the arm is empty and x is on the table in the 
situation resulting from the drop action



  

Frame Axioms

● Effects axioms are not sufficient to keep track of 
which formulas are true in a given situation

● We also need to explicitly state which parts of 
the world are not changed by an action

● Axioms which describe which parts of the world 
are not changed by an action are called frame 
axioms

● Together, the effect and frame axioms provide a 
complete description of how the world evolves in 
response to actions



  

Example Frame Axioms

∀a, x, s (¬Holding(x, s)∀ ∀   a ∧ ≠ pickup(x) → 

 ¬Holding(x, result(a, s)))

● for all actions a, blocks x and situations s, if the arm is not 
holding x in s and a is not the action of picking up x, then 
the arm will not be holding x in the situation which results 
from performing the action a

∀a, x, s (Holding(x, s)∀ ∀   a ∧ ≠ drop → Holding(x, result(a, s)))

● for all actions a, blocks x and situations s, if the arm is 
holding x in s and a is not the drop action, then the arm 
will still be holding x in the situation which results from 
performing the action a



  

Exercise: Situation Calculus

● Use the possibility, effects and frame axioms 
(and the domain theory) to show that picking up 
block c and dropping it on the table results in all 
three blocks being on the table, i.e. that

 OnTable(a, result(drop, result(pickup(c), s
0
))) ∧

 OnTable(b, result(drop, result(pickup(c), s
0
))) ∧

 OnTable(c, result(drop, result(pickup(c), s
0
)))

is true



  

Exercise 1: Solution (frame axioms)

∀a, x, s (OnTable(x, s)∀ ∀   a ∧ ≠ pickup(x) → 

  OnTable(x, result(a, s)))

● for all actions a, blocks x and situations s, if x is on the 
table in s and a is not the action of picking up x, then x 
is still in the table in the situation which results from 
performing the action a

● we also need a unique name assumption, e.g.:

∀a, y, s (x ∀ ∀ ≠ y → pickup(x) ≠ pickup(y))



  

Exercise 1: Solution

● For block a, given OnTable(a, s
0
) we can show

OnTable(a, result(pickup(c), s
0
))

● Using modus ponens and the frame axiom

∀act, x, s (OnTable(x, s)∀ ∀   act ∧ ≠ pickup(x) → 

  OnTable(x, result(act, s)))                       

● Since pickup(a) ≠ pickup(c) using modus ponens and the 
frame axiom, we can then show

 OnTable(a, result(drop, result(pickup(c), s
0
)))

● Since pickup(a) ≠ drop

● Derivation for block b is similar



  

Exercise 1: Solution

● For block c: from the initial state and the possibility axiom

 ∀x, s (ArmEmpty (s) ∀  Clear(x, s) ∧ → Poss(pickup(x), s))

● we have that it is possible to perform a pickup action on c Poss(pickup(c), s
0
))

● From the effects axiom

 ∀x, y, s (Poss(pickup(x), s)∀ ∀   On(x, y, s) ∧ → 

    Holding(x, result(pickup(x), s))  Clear(y, result(pickup(x), s))∧

● we can derive the effect of actually picking up block c, i.e.:

   Holding(c, result(pickup(x), s
0
))  Clear(a, result(pickup(x), s∧

0
)) 



  

Exercise 1: Solution

● from Holding(c, result(pickup(x), s
0
)) and the 

possibility axiom

∀x, s (Holding(x, s)) ∀ → Poss(drop, s))

● we have that Poss(drop, result(pickup(c), s
0
)) and 

using the effects axiom

∀x, y, s (Poss(drop, s)∀ ∀   Holding(x, s) ∧ → 

 ArmEmpty(result(drop, s))  OnTable(x, result(drop, s)))∧

● we can show

 OnTable(c, result(drop, result(pickup(c), s
0
)))



  

Exercise 2: Situation Calculus 2

● Write possibility, effects and frame axioms for the 
action put(x, y) which puts the block x on the 
block y

● For put(x, y) to be possible, x must be held by 
the arm, and y must be clear

● The effects of put(x, y) are that the arm is empty 
and that x is on y

● The frame axioms should state that, apart from 
the effects of a put(x, y) listed above, nothing 
else changes



  

Exercise 2: Solution

∀x, y, s (Holding(x, s)∀ ∀   Clear(y, s) ∧ → Poss(put(x, y), s))

● the action put(x, y) is possible in situation s, if 
the arm is holding block x and y is clear in s

∀x, y, s (Poss(put(x, y), s) ∀ ∀ → 

 ArmEmpty(result(put(x, y), s)))  On(x, y, result(put(x, y), s)))∧

● The effects of performing a put(x, y) action which is 
possible in situation s are that the arm is empty and 
block x is on block y in the situation resulting from the 
put action



  

Exercise 2: Solution

∀a, x, y, s (Holding(x, s)  (a ∀ ∀ ∀ ∧ ≠ drop  a ∨ ≠ put(x, y))  
→ Holding(x, result(a, s)))

● for all actions a, blocks x and situations s, if the 
arm is holding x in s and a is not a drop action 
or a put action, then the arm will still be holding 
x in the situation which results from performing 
the action a

● Note: this replaces the previous frame axiom 
for Holding



  

The Frame Problem(s)

● The (typically very large) number of frame axioms required to 
reason about actions in a domain gives rise to the 
representaional frame problem

● The inferential frame problem refers to the need to raeson 
explicitly about things that don't change

● When reasoning about sequences of actions, each propeerty 
of interest must be (re)derived for each new situation, even if 
the property hasn't changed

● Since each action usually changes only a few facts about a 
situation this is very inefficient



  

The Qualification Problem

● In general, it is difficult to specify precisely the situations in 
which an action will have the specified (intended) results

● For example, it may not be possible to perform a pickup action 
if the block is slippery or glued to the table

● If these “side conditions” are left out of the effect and frame 
axioms, we may derive false beliefs about the consequences 
of executing and action

● How to qualify the “normal” effects of an action in “abnormal” 
circumstances is the qualification problem



  

The Ramification Problem

● In addition to the explicit consequences specified in their 
definitions, actions also have implicit consequences

● For example, picking up a box also picks up all of the objects 
in the box (if any), and if I take the box somewhere, I also 
take its contents etc.

● The ramification problem can be seen as the derivation of 
the ultimate effects of an action

● May involve additional simple inferences (if the box is in the 
living room, then all the objects in the box are in the living 
room), reasoning about cause and effect (naive physics) and 
other kinds of consequences

● Hard to know when to stop...



  

Example

● Gavrillo Princip shoots Archduke Franz 
Ferdinand

● Shooting Franz Ferdinand causes him to die
● The death of Franz Ferdinand leads to the 

Austro-Hungarian Empire declaring war on 
Serbia

● Which leads to the first World War
● Which leads to the Treaty of Versailles ...
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